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ABSTRACT
Mobile networks are a crucial part of our digital lives and require

adequate security measures. The 4G and 5G network standards

are complex and challenging to implement, which led to several

implementation issues being discovered over the last years. Conse-

quently, we aim to strengthen automation in testing and increase

test coverage to spot issues and potential security vulnerabilities.

In this paper, we explore active automata learning for 4G/LTE

protocol state machines. We focus on LTE’s Mobility Management

Entity (MME), the main core network element that handles all user

registration and authentication through the NAS protocol. Based on

automata learning, we automatically reconstruct the NAS protocol

state machine to study implementation-specific artifacts and their

security implications. We design and implement a reliable UE-to-

MME interface for testing the MME from the perspective of a user

device. This method allows testing of fully functional core networks

without modification. Based on a prototype implementation, we test

two open-source projects, one commercial MME implementation,

and one MME in an operator’s test network replicating the live LTE

network. We expose several bugs, including crashes in three of the

four implementations, potentially leading to network outages.
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1 INTRODUCTION
4G and 5G mobile networks connect billions of users to the Internet.

With an increasing number of applications and the integration of

critical services, mobile networks themselves have become critical

infrastructure. As a result, network equipment should be subject to
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enhanced scrutiny and extended testing. Determining whether an

implementation complies with the appropriate standard is a chal-

lenging problem. We study this problem with a focus on LTE’s user

management and authentication protocols, since these protocols

represent a core function of mobile networks.

When smartphones register at the mobile network, they are at

the beginning of a “maze”: a complex protocol state machine that

controls under which conditions a user can connect to the network

and which security aspects need to be considered [10]. The proto-

cols’ complexity arises from the main use-case of mobile networks:

user mobility, which introduces many shortcuts into the state ma-

chine. The LTE standard describes the protocols’ state machines

textually without detailed reference and the handling of unexpected

messages is not specified thoroughly. That requires human inter-

pretation, which can lead to ambiguity and misunderstanding, and

thereby to security issues [3]. Prior work demonstrates that LTE

equipment is indeed prone to vulnerabilities due to implementation

flaws. Kim et al. [13] present the semi-automated LTEFuzz and find

spoofing and Denial-of-Service attacks. Meier et al. perform fuzzing

on message parsers in baseband implementations [15]. Current test-

ing approaches start with an investigation of the standard, which

potentially leads to similar misunderstandings. Therefore, we aim

to change that in our approach and start by automatically analyzing

the implementation, deriving a model that is later checked for basic

security properties – without much knowledge from the standard.

We explore the method of active automata learning, which works

by mutating the order of otherwise valid messages, in contrast

to fuzzing, where message contents are mutated. The feedback –

responses from the network – allows the construction of a protocol

state machine that is later checked against security requirements

from the standard. Our approach integrates two valuable features:

𝑖) it automatically generates test cases, aiming at comprehensive

state coverage, and 𝑖𝑖) the reconstruction of a state graph yields a

powerful visualization where logical errors become apparent. We

apply our approach to the core network’s gatekeeper, the MME:

it is responsible for authentication, granting network access to

legitimate users, and denying others. Phones directly communicate

with the MME via the NAS protocol, relayed by the base station.

Attackers can send arbitrary NAS messages over-the-air by using

customizable basebands such as srsUE [7]. Consequently, any faults

in the MME put the mobile network at risk and may cause network

outages or unauthorized access.

In summary, we provide three key research contributions:

• We propose automata reconstruction for LTE’s NAS protocol

to uncover security vulnerabilities in LTE deployments. We

design and implement a reliable system for simulating user

input to theMME. Our approach utilizes feedback frommulti-

ple protocol layers, building on components fromUser Equip-

ment and Base Stations. We overcome several challenges that
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otherwise arise from wireless testing protocols. We extend

state machine learning to handle non-deterministic system

behavior to enable real-world testing deployments.

• We implement a prototype of the proposed concept and run

tests with the commercial Amarisoft network and two open-

source implementations srsEPC and Open5GS. Furthermore,

we evaluated an operator’s test network to demonstrate that

our approach can test a complex, real-world LTE deployment.

• We automate the state graph analysis and develop a rule-

based model checking to find logical errors and expose po-

tential security issues. We cause crashes in three networks,

and show irregularities in all of them.

The upcoming 5G remains very similar on the here-discussed NAS

protocol layer, making our approach directly applicable for 5G.

Responsible Disclosure. Our analysis reveals non-compliant be-

havior, especially in open-source implementations. We contacted

the authors and found that the issues were independently fixed.

We re-tested later releases and confirmed the fix. One non-critical

issue in commercial software was disclosed through the operator’s

support channels and the issue was found resolved.

2 PRELIMINARIES
We briefly introduce active state learning, and review relevant parts

of the LTE network with focus on user management procedures.

2.1 Active Automata Learning
Learning By Doing is human intuition: children try everything

and observe what happens until they understand it. Similarly, we

can examine protocol implementations by providing input and

monitoring the output. Automata learning performs this learning

process in an automated way for finite state machines (FSM, also

known as state machines/automata) and is a well-suited method for

communication protocols [5, 6, 22]. Formally, Mealy machines are

described by the tuple (𝐼 ,𝑂,𝑄, 𝑞0, 𝛿, 𝜆) with input symbols 𝐼 , output

symbols 𝑂 , and the set of states 𝑄 (with the initial state 𝑞0 ∈ 𝑄).

The transitional function 𝛿 : 𝑄 × 𝐼 → 𝑄 defines the transition to

the next state when an input is given to the machine. 𝜆 : 𝑄 × 𝐼 → 𝑂

is the output function, mapping the output to a state transition.

Active automata learning infers the statemachine from sequences

of inputs sent to the system and the corresponding responses. We

use LearnLib [12], an abstract state learning implementation that

requires a custom interface to the system under learning. LearnLib

sends abstract message sequences. These are translated to messages

that make sense to the system under learning and its targeted

protocol. Likewise, the replies are translated back to an abstract

form that LearnLib understands.

LearnLib requires the state machine to be a finite and determin-
istic Mealy machine. Precisely, for a given state and input, there

is only a single transition to another state. During this transition,

the state machine replies with one output. We observed that a

non-deterministic behavior of the core network is a significant chal-

lenge for the learning process. A greater input alphabet increases

the number of required queries, however, the TTT algorithm at-

tempts to reduce the number of queries. Ultimately, the runtime

depends on the complexity of the to-be-inferred state machine.

Hypotheses and Refinement. State learning successively learns

the Mealy machine in a two-phase process, which is repeated until

the learning process is complete. The learning phase explores the

responses to sequences of input symbols, resulting in a state ma-

chine hypothesis. The verification phase compares the hypothesis

to the actual system with supplementary queries. If the system

responses conflict with the hypothesis, e. g., by responding to one

input with a different output symbol, we call it a counterexample.

The following learning round uses this counterexample to refine

the hypothesis further. If no counterexample is found, the learning

process is finished. We use the standard TTT algorithm [11] for the

learning phase and a random oracle for verification phase.

In contrast to fuzzing, Automata Reconstruction results in a high-

level view of the protocol state machine. It does not aim for code
coverage and software bugs e.g. during message parsing, but for

the logic of the implemented protocol.

2.2 LTE Network
In mobile networks, the User Equipment (UE) connects wireless to

base stations (eNodeB), which forward all user data to and from

the core network. The core network performs management tasks

such as registration, mobility management, and authorization for

Internet access.

User Equipment (UE). The UE is the user’s access terminal, in

most cases a smartphone. A basebandmodem inside the smartphone

processes all LTE-specific functionality. Additionally, the SIM card

stores the user identity (IMSI) and a shared key, which is used to

establishing mutual authentication and derive communication keys.

eNodeB. On the network side, eNodeBs span the wireless cells
that users connect to. eNodeBs independently perform all radio-

related management through the RRC protocol without much in-

teraction to the core network. They provide the transport layer to

the core network for user’s IP traffic and NAS protocol.

Core Network: Mobility Management Entity (MME). The operator-
run core network is a server landscape that performs all management

aspects of mobile networks. The MME is the central component

managing user access, mutual authentication, and keeping track

of a user’s location. Most of these functions involve many other

network nodes; however, the MME orchestrates them. With this

central role, theMME is the central element for the network’s access

security and, therefore, this paper’s main scope.

UE and MME communicate through the NAS protocol with the

base station as a relay, involving interaction between the NAS

layer and the underlying transport protocols RRC (radio-side) and

S1AP (network-side). For example, the NAS instructs the radio

layers to create a connection for user data if the authentication

succeeds. If, however, the authentication fails, it terminates the

radio connection. We will discuss the interaction of these protocols

and their implications for state machine learning in Section 3.

2.2.1 User Mobility. User mobility is central to mobile networks

and a significant challenge: calls and data connections should work

without interruption even when users travel. At the same time,

power saving is essential to make smartphones work. Both require-

ments together are the design rationale for LTE procedures. LTE
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separates the management tasks: base stations handle radio con-

nections, and the core network handles logical user management.

This separation allows suspending the radio connection for power

saving while the logical registration remains active. Similarly, the

core network might ask to renew the registration while the radio

connection is already active. This separated design adds complexity

to the protocols; there is no simple “on” and “off” state. Instead,

several kinds of transitions between sub-states of the radio and

logical connections are possible.

2.2.2 Procedures and States in LTE’s NAS Protocol. The MME is di-

rectly exposed to user input via the NAS protocol (hence accessible

to adversaries) and plays a crucial role regarding the network’s se-

curity. Consequently, we focus our analysis on the implementation

of the NAS protocol at the MME. In the following, we introduce

common, specific, and connection management procedures to under-

stand the subsequent analysis. As an example, Figure 1 shows the

Attach procedure, combining several subprocedures.

Timers. It is important to note that most procedures use timers

for triggering fine-grained timeout reactions. For example, the net-

work may take several actions upon a timeout: (i) message re-

transmission, (ii) procedure cancellation, or (iii) fallback to another

procedure. For our study, we neglect timers, hence, infer a simpli-

fied state machine without timers. We detail our assumptions in

Section 3.2.

Common Procedures. These procedures are the building blocks
for the high-level specific procedures, and they usually consist of a

simple request-response message pair:

• Identification procedure: The network sends an Identity Re-
quest to the UE to ask for the identity; the UE transmits the

identity in an Identity Response.
• Authentication to mutually prove the identity; the network

sends an authentication challenge, the UE responds.

• Security Mode procedure: The network enables the encryp-

tion and integrity protection with a Security Mode Command.
The UE acknowledges the decision (Security Mode Complete)
and protects subsequent messages.

• Lastly, EMM Information exchanges parameters that have

not been included in other messages.

Some messages require encryption and integrity protection, but

not all:, e. g., Identification and Authentication do not require in-

tegrity protection, as they may need to run before the Security Mode
procedure.

Specific Procedures. These procedures combine the building blocks

and transition between the high-level states, e.g., establishing the

connection when switching the phone on.

• The Attach procedure shown in Figure 1 runs when users

initially connect to the network. The UE-originating Attach
Request usually specifies the user identity, the type of con-

nection (e.g., data access or emergency call), and the user

device’s capabilities. If the supplied identity is invalid, e.g.,

an outdated temporary identifier, the MME requests the

permanent identity. Subsequently, MME and UE perform

mutual authentication and activate encryption and integrity

protection in the Security Mode procedure.

Identification

Authentication

Security Mode

Attach Request

Identity Response
Identity Request

Authentication Response
Authentication Request

Security Mode Command

Attach Accept
Attach Complete

Security Mode Complete

Attach

UE
MME

Figure 1: Attach Procedure in the NAS protocol with subpro-
cedures. User device and MME communicate via a base sta-
tion.

• TheDetach procedure de-registers the user from the network,

removing all active connections and contexts. Smartphones

typically trigger this on switch-off or flight mode activation.

Connection Management Procedures. Most notable for LTE is that

the UE may have an idle radio connection while being registered

in the core network. To transit between the radio idle and active

state, the following procedures are used:

• The network-initiated paging informs idle users to re-connect.

• The user-initiated Service Request is a fast short-cut alter-
native to the full Attach: if the Service Request passes the
integrity check, the connection is immediately restored with-

out re-authentication.

Handling of Unforeseen Messages. The LTE specification defines

the procedures in a textual description. Hence there is room for

ambiguity and misinterpretation. Further, performing these proce-

dures must consider various timers, potential connection failures,

and other side effects throughout the procedure’s execution. Con-

sequently, collisions between procedures can happen. For example,

the UE may initiate the Service Request procedure right before re-
ceiving a (network-initiated) Detach request. Although the parts

of specification try to clarify the handling of unknown and un-

foreseen protocol data, the actions are inadequately defined. The

specification explicitly states that “If the network receives a mes-

sage not compatible with the protocol state, the network actions

are implementation dependent.” [1, Section 7.4].

3 4G/LTE STATE LEARNING
Adapting the generic state-learning approach [22] for LTE brings

some unique challenges. First, the MME has no direct interface for

user input and requires a base station component (eNodeB) as an
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Figure 2: System architecture for MME automata learning.

intermediary node. Second, the additional components and associ-

ated protocols on different layers require caution due to possible

side effects. We explain how we addressed these challenges and dis-

cuss potential caveats. More specifically, we introduce 𝑖) a reliable
UE-to-MME interface with virtual UE and eNodeB component in

Section 3.1 and 𝑖𝑖) the LTE-specific considerations on state learning

in Section 3.2. Figure 2 shows the designed system architecture,

which we discuss in the following.

3.1 Simulating User Input to the MME
For enabling state machine learning on the NAS protocol level, we

abstract the interaction between UE and MME. Therefore, we build

an instructable UE-to-MME interface for generating and sending

messages in arbitrary order. The lower half of Figure 2 shows the

implementation. The UE-side NAS component receives instructions

from LearnLib and returns the MME’s answer message-by-message.

eNodeB component transports the messages to the MME via the

S1AP protocol. This approach is equivalent to sending the NASmes-

sage via the radio interface, even though we remove the radio layer

for additional reliability, speed, and increased feedback. We used

components of the srsRAN project [24] for our implementation.

Further, we add input actions for the other components and

receive feedback from the lower protocol layers. All components

share a common response queue: NAS messages, MME-issued S1AP

commands, and error indicators are pushed to this event queue.

The NAS generator class translates these events back to LearnLib

output symbols or performs error handling. For generating output

symbols, we prioritize NAS messages and include events from other

layers (if available). If no response is available after a configurable

timeout, we return a timeout symbol.

All protocols layers contain their own state machine and are

inter-dependent on NAS. For example, the lower layers initialize

on the first UE-sent message, and finish initialization with the first

MME response. If that response never occurs (because the first

message of that sequence did not make sense to the MME), this

leaves the lower layers uninitialized. Our interface implementation

abstracts these implications so that any input symbol can be sent

at any time.

Attacker Model. We design our setup to test from a user’s per-

spective. In general, all the input messages we send to the network
can be sent over-the-air both for testing and for attacks. eNodeB-

feedback would not be available, which hinders testing but not

specific attacks. However, NAS-layer issues do not necessarily trans-

late to exploitable vulnerabilities due to radio-layer security (see

discussion).

3.2 Considerations for LTE State Learning
With the instructable UE-to-MME interface, we can send messages

directly to the MME. However, in the complex environment of LTE

core networks, automata reconstruction brings unique challenges.

3.2.1 Initial State and Reset Procedure. State learning requires start-
ing from an initial, known state for each test case. More specifically,

this applies to the MME as a whole and the UE’s context main-

tained by the MME. The reset procedure attaches the UE, tests the

Internet connection, and then detaches the UE. We consider this

state as the initial state for all further tests, given that this is also

the most realistic assumption in real core networks, where a UE

context cannot be removed entirely. The reset procedure also acts

as a health check to verify that the test setup is fully functional.

A major challenge is to perform a reliable state reset for the

MME from any state the testing procedure may have caused. For

example, we found open-source core networks frequently reach

non-recoverable states (crashing, hangs, or non-responsive network

components that the MME relies on). In those cases, we can not

launch a simple detach procedure. Thus we monitor the reset and

undertake additional actions if necessary. In some cases, we even

need to restart the core network before further testing, including

purging the UE’s context in the packet gateway and other connected

nodes. The core of our reset procedure works independent from

any network, especially when the core network is stable.

3.2.2 Input and Output Alphabet. We support three types of input

messages: 𝑖) NAS messages, 𝑖𝑖) RRC/S1AP messages for emulating

idle radio connections, and 𝑖𝑖𝑖) a Connection Check symbol that

triggers an ICMP ping through the LTE data bearers. We explicitly

exclude timers and timeout behavior at all levels for simplicity and

leave their analysis for future work in this area.

NAS message construction. The learning algorithm instructs the

UE-to-MME interface to send and receive abstract symbols. These

symbols must be translated to LTE-compatible messages. We sup-

port all messages that are part of the following NAS procedures:

Attach, Detach, Authentication, Security Mode, Identification, ESM

Information, and Service Request. The messages potentially lack the

context and temporary values that usually come from the previous

messages. Ensuring that the messages have a valid context, e. g.,

with valid security contexts, is the main challenge for the message

construction. In particular, we must ensure that all messages are as

meaningful as possible to trigger a state transition. If the current

test run lacks a valid value, we reuse a value from the previous

reset procedure. The reset procedure populates these temporary
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values, ensuring that there is no inter-dependency between test

cases. Mainly, we define the behavior for the following cases:

• Authentication: answers the last available challenge, re-playing
the reset’s challenge-response if necessary.

• Encryption & Integrity Protection: reuse keys from reset if

current test case did not reach a key agreement.

• Identification: uses temporary identities in Service Request

and prefers the permanent identity for Attach Requests.

Further, we parameterize the security protection of NAS messages

to show if a message is accepted without a proper security check,

and decouple the security header and payload protection:

• Security Header : the security header of a message indicates

the following message protection (plain, integrity protected,

integrity protected, and cipher). We allow the learner to

arbitrarily set this header.

• Payload Protection: this parameter allows to skip the integrity

protection, or both the integrity protection and encryption.

A NAS message input symbol is the combination of all parameters

‘message type’, ‘security header’, and ‘payload security’. Similarly,

NAS output symbols carry both the message type and the corre-

sponding security header.

RRC/S1AP Multi-Layer Learning. Another challenge is that some

MME state transitions come without a direct response or input

symbol on the NAS layer. For example, the successful outcome of a

Service Request is signaled by an RRC connection setup but not by

a NAS message. Therefore, it requires using a multi-layer approach,

including theNAS, RRC, S1AP, and IP layers, to enable state learning

for LTE. We collect the following cross-layers feedback:

• S1AP Bearer Setup (Output): when the MME instructs the

eNodeB to set up a connection, e.g., due to a Service Request,

this is only visible on S1AP.

• S1AP Bearer Release (Output): similarly, the Bearer Release

instructs the eNodeB to disconnect radio bearers to the UE,

e.g., due to UE detach or unsuccessful authentication, but is

not directly visible on NAS.

• SCTP Connection Termination (Output): the transport-layer
SCTP connection between eNodeB and MME was termi-

nated; a strong indicator that the MME crashed.

Analog to the feedback, two functionalities are central to the NAS

state machine but originate on other layers:

• S1AP Bearer Release (Input): the eNodeB releases the UE

and sends into the radio-idle mode due to inactivity. This

command shall release the UE’s data bearers.

• Connection Check (Input) a ‘connection check’ input symbol

triggers sending an ICMP ping via the LTE data connection

to test if the core network accepts and forwards user data.

The ping response yields a ‘connection successful’ symbol.

3.3 Detecting & Handling Non-Determinism
LearnLib requires the to-be-learned state machine to be determin-

istic. However, complex systems like the LTE core network do not

always act deterministically. Or rather: we cannot control all inputs

to the system; thereby, the system may seem non-deterministic.

We observed this aspect during error conditions, e. g., when in-

put messages led to bad memory accesses that sometimes caused
crashes. Re-enabling state learning for finite state machines with

refine
hypothesis

initial
hypothesis

find
counterexample

learned
model

no CE handleinconsistency

restart learning
keep cache

x
x

MME

Cache

x

Figure 3: Inconsistencies are handled and replaced by a ’non-
determinism’ symbol in a multiple step process.

non-deterministic behavior prove as a major challenge. To solve

this challenge, we modify LearnLib’s learning process by adding a

chain of oracles between LearnLib and the UE-to-MME interface.

Generally speaking, we found that two kinds of unreliable behav-

ior can appear, and we handle both cases differently: 𝑖) short-time

transmission issues and 𝑖𝑖) real non-deterministic behavior.

3.3.1 Transmission Issues. Re-transmissions, lost messages, and

varying kinds of timeouts appear occasionally, without directly

being caused by the NAS-level state. Thereby, these transmissions

should not influence the learned state machine.

To handle transmission issues, we include a probabilistic oracle
that executes every test case at least three times consecutively.

If all results match, we assume it is free of transmissions errors.

Otherwise, we repeat the execution until one answer occurs with a

high probability. If no candidate appears reliably, a non-determinism
exception is thrown that includes the two most likely answers.

3.3.2 Non-Determinism. Real non-determinism occurs when two

identical input sequences result in contradicting responses. As the

underlying learning algorithm assumes determinism, the learning

process cannot infer a correct state machine. Nevertheless, we

encountered this type of issue during the experiments, which we

describe in the next section.

We might only realize that a message sequence yields unreliable

output after one of the sequences already made it into the current

hypothesis. However, LearnLib cannot undo observations. To ad-

dress this shortcoming, we modified and extended the learning

process to handle non-determinism, which is illustrated in Figure 3:

We continuously record all executed test cases with an observation

tree and check new responses against the observation tree for con-

sistency. If any new observation disagrees with prior observation,

we detect Non-Determinism. To introduce the Non-Determinism
symbol into the learned state machine, we perform the following

steps:

(1) Replacing states with Non-Determinism symbol. We remove

all child nodes of the output symbols after the occurring

non-determinism and replace them with a Non-Determinism
symbol.
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Table 1: Overview of the tested networks

Core Network Section Version Inputs States Transitions

Amarisoft 5.3.1

2019-09-30 43 22 426

2020-09-30 67 16 276

Open5Gs 5.3.2

2.0.3 30 33 697

2.0.18 25 21 571

srsEPC 5.3.3

20.04 28 43 688

20.10 67 9 179

commerical 5.3.4 - 17 10 170

(2) Learning the Non-Determinism symbol. In the previous step,

we changed the considered state machine by introducing

a new symbol. In consequence, the underlying learning is

based on false premises. Therefore, we need to ensure that

the underlying learning takes the newly introduced Non-
Determinism symbol into account. We do this by restarting

a clean learning algorithm and feed in the queries from the

modified observation tree. This procedure ensures that we

feed all knowledge into the learning algorithm, including

the Non-Determinism symbol. An additional advantage of

using the observation tree is the efficient re-loading after

restarting the learning process.

We turn the Non-Determinism state into a sink: whenever the

symbol occurs in a sequence, any following input message automat-
ically returns a Non-Determinism symbol and does not reach the

MME, as the answer would not be reliable anyway. This ensures the

integrity and reliability of the underlying learning algorithm (TTT):

towards LearnLib, the state machine is always deterministic as any

non-deterministic behavior disappears behind theNon-Determinism
state. The symbol still enables easy identification of potential error

states: We can analyze the reasons for the non-determinism and

perform manual retesting.

4 CHALLENGES OF THE EXPERIMENTS
We implemented an active automata learning system based on the

preceding approach and conduct tests with four core networks:

the open-source implementations srsEPC and Open5GS, the com-

mercial Amarisoft EPC, and a live installation in an operator’s test

network. Table 1 lists versions and size of inferred state machines;

we later perform a detailed analysis in Section 5. All core networks

reflect realistic settings: their configuration requires encryption

and integrity protection, and are otherwise unmodified. The net-

works also obey the standard interfaces; each network requires an

integration phase and brings its own set of challenges for testing.

Some open-source core networks are hard to test. We often ob-

served crashes in the HSS or gateways for those networks—leaving

the network in an unstable state without any feedback, thereby

impossible to handle for a reliable testing procedure. We decided to

leave them untested and exclude them from further analysis. Like-

wise, the number of input symbols varies between core networks.

The (very stable) Amarisoft was also tested with an additional pa-
rameter which effectively doubles the number of input symbols.

We found that both srsEPC and Open5GS were reliable enough

for testing, but require a complete restart before each test case to

ensure proper operation. The commercial networks required little

to no adaption for our prototype implementation; these systems

recovered from errors and prove reliable during our tests.

The execution time for test sequences varies. Naturally, the query

length and the number of occurring timeouts influence the execu-

tion time. We set timeouts from 75 ms to 150 ms custom to each

network, determined by the typical response time. However, the

dominating factor is the time spent waiting for the core network

to restart, as it was necessary for the tested open-source imple-

mentations. The runtime typically was below 4 hours. If crashes

occur, this has a heavy impact on the runtime. This is why for some

networks, we limit the number of tested input symbols: if we know

that a certain message crashes the network, we do not test that

message with all parameters.

Testing in an Operator’s Test Network. We had the opportunity

to perform several experiments in an operator’s lab with a core

network that replicates the public, live network. The deployedMME

is a data center appliance, requires an operator-issued hardware

SIM, and a slightly more complicated network setup to register an

eNodeB. Besides that, it uses the same SCTP/S1AP/GTP-U interfaces

and thereby accepts our eNodeB and UE components without issues.

However, the hardware SIM unexpectedly limited the genera-

tion of authentication responses to two per second. This posed a

major bottleneck during our test, given the limited amount of time

available. As a result, we only obtained a limited coverage and an

incomplete state machine, at least compared to those implemen-

tations tested in our own lab. Further, we could not perform the

‘connection check’ due to the specific setup available to us and

cannot determine if we had a working data connection in a given

state. However, this does not influence the correctness of the rest

of the state machine. The experiments showed that the approach

is generally suitable to test commercial appliances, where source

code or binary access is not an option, and the eNodeB interface

is the only interface available for testing (see Section 5.3). Due to

access restrictions caused by COVID-19 measures, we could not

yet repeat and extend the tests in the operator’s lab.

5 STATE MACHINE ANALYSIS
We perform our analysis based on the observed state machine.

Implementation-internal states are not available for the analysis.

Our analysis is solely based on the inferred state machine, and

especially on its transitions (the request/response pairs).

As noted before, the standard lacks a well-defined state machine.

Thus, assigning names to states and checking if the result matches

the (underspecified) standard would contradict this analysis’s pur-

pose. Building a reference statemachine puts us in the same position

as a developer, and our interpretation would also be biased. Further,

performing a manual analysis does not scale with the number of

transitions. We choose model checking to check whether the given

state machine meets specific security requirements.

Instead of comparing the inferred state machines to a reference,

we distill the security-relevant properties and use model check-

ing on that high-level abstraction. Figure 4 describes a two-step

process that we apply on the inferred state machine. In the first

step, we assign properties to the states themselves, based on the

in- and outgoing transitions. Further, we inherit specific properties

to following states if the connecting transitions meet all necessary
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Figure 4: Model checking steps of the learned statemachine.

criteria. This step does not conclude anything about security yet.

In the second step, we check if the model meets a specific require-

ment. For this, we use the state graph’s assigned state properties

and direct transitions towards and from the state. As an example,

Figure 5 shows part of an inferred state machine with properties

already assigned.

5.1 Property Assignment
The property assignment is a building block for model checking.

For example, it is central to our analysis whether a user has passed

the Security Mode procedure, thereby wemark following states. We

assign state properties based on the transitions. Some properties are

propagated to the following states (directed) until a stop condition.

In the following, we define the properties:

• Authenticated State: initially, all states that are reached

through the Authentication/Security Mode procedure. We

propagate the authenticated property through transitions

where the incoming and outgoing NAS messages are in-

tegrity protected. It implies that the network successfully

checks and decrypts the incoming message and acknowl-

edges this with a protected message. We refer to those mes-

sages as protected. Essentially this means that all states after

the Security Mode procedure are tagged as authenticated until
a transition with missing protection occurs.

• Unauthenticated State: All states where no incoming tran-

sition indicates that a valid security context exists are con-

sidered unauthenticated, e. g., not reached through the Au-

thentication/Security Mode procedure or exchanged a valid

MAC in the header. By definition, we assume that radio-idle

states are unauthenticated since we do not assume that au-

thentication propagates through S1AP messages (leading to

radio-idle).

• Radio-idle State: States where the state machine releases

the radio connection, i.e., on S1AP Bearer Release.

• Crashed State: States in which the SCTP connection be-

tween eNodeB and MME is terminated, which indicates a

crash of the MME.

• Has-Internet State: The has-internet property is based on

a successful ICMP ping test.

• Non-deterministic State: States with an incoming non-
determinism transition, which was created when the cache

component detected such a condition.

5.2 Checking the Model: System requirements
We use the assigned state properties as blocks to formulate sys-

tem requirements. We focus on six system requirements to analyze

specific security-relevant aspects. Table 2 gives an overview of the

inferred state machines. Property assignment and system require-

ments are implemented as Neo4J[16] queries. If some property is

violated, the query returns the offending subgraph (see Figure 5 for

example) that allows further manual investigation. We first intro-

duce the system requirements and then present the results for the

four core networks.

R1: Transitioning from Unauthenticated to Authenticated States.
During attach, only the Authentication and following SecurityMode

procedure should cause a transition between unauthenticated to

authenticated states. Further, the Service Request can cause such

transitions because the radio-idle state is assumed to be unauthen-

ticated.

R2: Acceptance of Unauthenticated Messages. The standard re-

quires the MME to ignore all unprotected messages until the Se-

curity Mode procedure has finished – except for messages of the

Attach and Identification procedure. Further, unprotected reject
messages are allowed if the network cannot proceed with the UE

registration.

R3: Network-Originating Unprotected Messages. After the secu-
rity context is established through the Security Mode procedure,

the MME must protect all outgoing messages. This means at least

integrity protected or integrity protected and encrypted.

R4: Crashes. At no time crashes of the core network are allowed.

Crashing an MME possibly renders the mobile network unavailable

for all users in a given region.

R5: Non-Deterministic States. The state graph of the MME should

not contain non-deterministic states. However, as noted in Sec-

tion 3.3, we observed the non-deterministic behavior during our

empirical experiments. Finding non-deterministic states is the start-

ing point for manual investigation.

R6: Internet Access in Un-Authenticated States. No state should

have both the unauthenticated and has-internet properties. Further,
any path from unauthenticated states to has-internet states must

either execute the Authentication and Security Mode procedure

and pass only authenticated nodes from that point on, or use the

Service Request procedure.

5.3 Core Networks
In the following, we describe the analysis results for each tested

network. We first provide a general description of the results and

then study the individual requirements. Table 2 summarizes the

results.

5.3.1 Amarisoft. The Amarisoft core network is a commercially

available system and is provided as executable binary [2]. The

inferred state machine is derived from all available input symbols.

We tested two versions 2019-09-30 and 2020-09-30.
The inferred state machine for version 2019-09-30 has 22 states

with a total of 43 distinct input symbols tested. Most notably, we

found that Service Requests reliably crash the MME when sent
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Table 2: Result Overview:  yes, #no, - missing data

Model Checking Queries Amarisoft Open5GS srsEPC Commercial

Sec. 5.3.1 Sec. 5.3.2 Sec. 5.3.3 Sec. 5.3.4

v1 v2 v1 v2 v1 v2

R1: Non-standard transitions to authenticated states # #  #  # #
R2: Accepts unauthenticated messages after authentication # #  #  # -

R3: Network-originating unprotected messages # # # # # #  
R4: Network crashes on unexpected message  #  #  # #
R5: Non-deterministic behavior  #  #  # -

R6: Unauthenticated Internet access # #  # # # -

without a valid MAC and we manually verified this behavior. This

implies that an adversary can crash this MME, leading to a Denial-

of-Service attack of the core network. Further, the Attach Request

is always accepted and leads back to an unauthenticated state, while

unprotected Detach Requests are not accepted. An attacker could

thereby implicitly detach a target user by sending anAttach Request.

Version 2020-09-30 fixes these issues: the overall state machine is

more concise, without crashes or otherwise non-compliant behavior.

In detail, we found the following behavior (applies to both versions

if not stated otherwise):

R1: Aside from the expected Authentication and Security Mode

procedure, only Service Request leads from an unauthenti-

cated to an authenticated state. The message must be prop-

erly integrity protected.

R2: In authenticated states, the Amarisoft MME accepts only

unprotected Attach Requests and the S1AP Bearer Release

command: these lead back to unauthenticated states. Other

messages are not accepted if unprotected.

R3: Only Service Reject messages are sent by the network in

plain, and only in states with no security context established.

R4: Version 2019-09-30: In radio-idle states, sending a Service

Request with invalid message integrity should result in a

Service Reject message. Instead, the Amarisoft MME reliably

crashes. This enables an unauthenticated crash by sending

an Service Reject message with invalid MAC from the initial

state. Version 2020-09-30 does not crash during our tests.

R5: Version 2019-09-30: In some states, the Service Request does

not always crashes the network, but produces a Service Re-
ject. This ambiguity appears as non-deterministically in the

state machine. Version 2020-09-30: the network behaves de-

terministically and correct.

R6: We do not see any unauthorized Internet access.

5.3.2 Open5GS. Open5GS (also called nextEPC) is an Open-Source

5G and EPC core network implementation written in C [17]. The

learned model has 33 states and 991 transitions, which we learned

with 30 input symbols. Those transitions often differ in small details

leading to a new state allowing a fine-granular analysis. In the fol-

lowing, we analyze the state machine on the transition properties.

R1: Protected Attach Requests cause the network to skip re-

authentication and directly lead to authenticated states.

R2: The network does accept unprotected messages, leading to

the partly unauthenticated Internet access shown in Figure 5.

In particular, Open5GS seems to skip the integrity check for

Attach Complete and ESM Information Response.

R3: All network-originating messages are protected, if possible,

except for Attach Reject and Service Reject.

R4: In many states, an unsolicited ESM Information Response

and a subsequent random message causes a crash.

R5: Our model does contain test cases that did not behave non-

deterministically, however, no clear pattern emerges. The

underlying issues may occur during the learning process and

hypothesis creation, or within the UE-to-MME interface.

R6: This criterion also catches the already-discussed unauthenti-

cated Internet access in Figure 5.

We make two additional observations worth discussing as they

indicate the core network’s non-compliant behavior. First, the MME

accepts a Service Requests even when a radio connection already

exists. Usually, a Service Request shall reactivate the radio connec-

tion and only be sent by phone in the radio-idle state. Second, the

MME accepts the Security Mode Complete with various security

header types. Usually, the Security Mode Complete shall have the

security header “integrity protected and ciphered with new EPS

security context” [1, 5.4.3.3]. However, the MME accepts all security

protected headers (expect plain) for the Security Mode Complete

messages. Version 2.0.18 fixed all observed issues.

5.3.3 srsEPC. srsEPC is part of the srsRAN software suite that has

the objective of providing an end-to-end LTE system [24]. The main

focus of srsRAN is to develop a functional radio front-end rather

than a fully functional core network. We tested versions 20.04 and
20.10, showing fundamental changes in the state machine.

Version 20.04. We recognized two main patterns by the state ma-

chine of srsLTE in version 20.04: 𝐴) Distinct states depend on the

input parameter rather than only the message type. For example, a

different security header type leads to a new state. Consequently,

we find parallel paths during the initial attach procedure. 𝐵) The
network repeats the previously sent message if it receives an unso-

licited request instead of the expected answer. This behavior forces

the state learning algorithm to derive new states for each unso-

licited request and a response containing a repetition. Consequently,

the state graph has more states than needed, reflected by the high

numbers of 43 states and 1205 transitions with 28 input symbols.

We filter repeating responses during the analysis. In the following,

we analyze the state machine on the transition properties.
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Figure 5: Path to Internet access for Open5GS. The upper path goes through authenticated states exclusively (correct), however,
it accepts unauthenticated messages (lower path) after the Security Mode procedure.

R1: Within our model of srsEPC, several messages lead to authen-

ticated states which effectively provide a shortcut around

re-authentication.

R2: srsEPC accepts Authentication Response and Identity Re-

sponse in most states, further patterns do not emerge due to

the amount of states created.

R3: Once a security context exists, all network-originating mes-

sages are protected, except for rejects.

R4 & R5: Crashes of srsEPC do occur upon handling unexpected

Identity Responses. However, this does not always occur;

sometimes, malformed messages are sent back instead with-

out crashing. This is shown to us as non-deterministic be-

haviour within the state machine. After manual investigation

of the code base, we found this to be an issue in address-

ing the internal UE context storage that leads to accessing

uninitialized memory.

R6: There is no unauthenticated state with Internet access.

Version 20.10. Version 20.10 drastically simplifies the network

behavior, resulting in a much smaller state machine with only 9

states, despite more input symbols tested.

R1: Only the Authentication and Service Request procedure lead

from unauthenticated to authenticated states.

R2: Unprotected messages lead to state transitions, but without

network reply (timeout). These transitions have no further

security implication.

R3: Once a security context exists, all network-originating mes-

sages are protected, except for Rejects.

R4 & R5: We observed no crashes or non-deterministic behavior.

R6: There is no unauthenticated state with Internet access.

5.3.4 Commercial Network. Testing the commercial network took

place with an earlier software version that did not yet provide all

opportunities used within this analysis section; essentially, input

symbols like the connection test and feedback from the S1AP layers

were still missing. As a result, the state learner did not yet work

correctly in all cases and could not infer a complete model. Due

to the current pandemic, we had to stop these tests and could

unfortunately not perform additional tests in a commercial network.

Nevertheless, we gained important information from the partial

state graphs and test sequences we obtained during our preliminary

tests. Like all other networks, the commercial network provides a

standards-compliant Attach procedure.Wewere able to successfully

identify one issue, where the network returns an Attach Accept

message in plain text. This result shows that our testing did hit an

odd case within the protocol state machine. We conclude that our

approach is capable of testing even a commercial deployment, with

all additional complexity involved in such a system.

6 DISCUSSION
Selection of Core Networks. We tested two commercial and two

open-source core networks. The open-source networks aim at pro-

viding a platform for test and experimentation, rather than being

ready for a production-quality deployment. As such, we expected

them to be less stable and prone to crashes. Still, they are suitable

for developing the state learning approach and we identified several

types of shortcomings in these implementations. Furthermore, we

demonstrated the approach in commercial networks.

Transition from LTE to 5G. We demonstrated state machine learn-

ing for LTE networks. We expect that we can quickly adapt our

approach to 5G by expanding the NAS-layer mapper to 5G-specific

messages, and the S1AP transport to NGAP. However, the 5G pro-

tocols NAS and NGAP are similar to LTE, and we do not expect

fundamental differences. We believe our approach can help to in-

crease the security of future 5G networks by enabling a flexible

method to recover the state machine implementation.

Over-The-Air Transmission. By implementing both the User Equip-

ment and Base Station components in one software system, we can

effectively skip the wireless transmission channel, thereby avoid

additional complexity and utilize additional feedback. However, the

radio transmission must be considered when interpreting the re-

sults. We deliberately trigger RRC behavior via S1AP messages, e.g.,

an S1AP message to simulate that the phone goes idle. Reproducing

this behavior over radio connections requires that the user device

actually remains idle until the base station detects inactivity. The

radio link is also a crucial aspect regarding over-the-air attacks due

to radio-layer encryption that may inhibit attacks.
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Exploitability. The focus of our work is to verify the correct

implementation of core networks and their corresponding state

machines. It requires additional considerations and effort to deter-

mine if the discovered vulnerabilities are actually exploitable in

practice. For example, unauthorized messages on NAS might not be

exploitable due to additional security measures on the radio layer.

We still informed all software authors about potential issues, which

were found fixed independently.

Industry implications. In mobile networks, predefined tests are

state of the art: the recently published GSMA Network Equipment

Security Assurance Scheme (NESAS) [8] provides few selected test

cases. These test cases must be defined in advance, and often test

cases are added only as a reaction to previously discovered flaws.

Further, specific test cases cannot cover the correct functionality

of the complete state machine. In contrast, our approach allows

comprehensive testing without defining particular test cases in

advance. Consequently, our method is complementary to the indus-

try’s approach and suitable for an in-depth analysis.

7 RELATEDWORK
State Machine Learning. State Machine learning originates as a

formal method from the research area of software testing [22] and

lately became a tool for analyzing various protocol implementa-

tions. Ruiter and Poll performed state machine learning for TLS

implementations [5]. Fiterau et al. focused on the implementations

of DTLS [6], which builds upon the TLS-Attacker framework[21].

In the area of wireless protocols, Stone et al. [23] use state ma-

chine learning to analyze the WiFi handshake of access points. The

fundamental difference between WiFi and LTE is mobility manage-

ment, leading to more complex access procedures and maintaining

user contexts on multiple layers. We demonstrate instruction of

multiple protocol layers and receive their feedback to enable state

learning in LTE.

Mobile Network Security. The area of mobile network security

research can be divided by their focus on 𝑖) specification and 𝑖𝑖)
implementation and deployment [18]. This work belongs to the

latter, and we discuss only implementation and deployment-related

work. The implementation of complex mobile protocols holds its

own risk of implementation flaws. On the one side, implementations

are prone to memory corruption bugs to a vulnerable parser. For

example, Weinmann [25] found exploitable memory corruption

by manual baseband analysis. Maier et al. extended the manual

approach and developed a framework for fuzzing the parsers of

Mediatek basebands [15]. Kim et al. analyzed 18 baseband firmware

and found hundreds of mismatches with the specification [14].

In contrast to memory corruption, implementations can be also

prone to logical flaws. The manual inspection of the state machine

found various flaws in the phone or network, e. g., the imperson-

ation of users towards a network [4, 19], or eavesdropping on

phone calls [20]. Hong et al. [9] use meta information to find per-

formance bottleneck in core networks. Kim et al. [13] performed

semi-automated testing of protocol implementations in phones and

networks with pre-generated test cases and vulnerabilities to sev-

ering multiple attacks aims, e. g., denial of service, or downgrade

attacks. In contrast to their work, we start with the implementa-

tion and automatically reconstruct the MME’s state machine, which

allows us an in-depth analysis of the tested core network element

without prior analysis of the standard.

8 CONCLUSION
Verifying the correct implementation of mobile core networks is

challenging, considering the emerging requirements and complex-

ity. In this paper, we propose state machine learning and model

checking to increase the level of automation and coverage in test-

ing mobile networks. We address the challenges of input message

construction, non-determinism, and multi-layer feedback. We im-

plemented a prototype based on LearnLib and srsRAN and learn

partial NAS state machines of four MMEs. We discovered logic

flaws that cause crashes and the processing of unauthenticated

messages in open-source implementations during our evaluation.

Finally, we use our approach with a commercial network. Overall,

we believe that our approach can strengthen the security of the

core network implementations.
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